Refine your search:     
Report No.
 - 
Search Results: Records 1-13 displayed on this page of 13
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Development of the sintering solidification method for spent zeolite to long-term stabilization (Contract research); FY2020 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Shibaura Institute of Technology*

JAEA-Review 2022-008, 116 Pages, 2022/06

JAEA-Review-2022-008.pdf:5.36MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2020. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2018, this report summarizes the research results of the "Development of the sintering solidification method for spent zeolite to long-term stabilization" conducted from FY2018 to FY2021 (this contract was extended to FY2021). Since the final year of this proposal was FY2021, the results for four fiscal years were summarized. The present study aims to develop a new sintering solidification method in which glass is added as a binder to spent zeolite which is adsorbed radionuclides such as Cs and the nuclides are immobilized by sintering them. In this project, the optimum conditions for sintering solidification and the basic performance of the sintered solidified body will be evaluated by cold tests, and they will be demonstrated by hot tests.

Journal Articles

Effect of gamma-ray irradiation on corrosion of stainless steel contacted with Zeolite particle

Kato, Chiaki; Yamagishi, Isao; Sato, Tomonori; Yamamoto, Masahiro*

Zairyo To Kankyo, 70(12), p.441 - 447, 2021/12

Zeolite particles have been used in a Cs adsorption vessel for purification of contaminated water in Fukushima Dai-ich Nuclear Power Station (1F). The used Cs adsorption vessels were kept in storage space on 1F site. The risk of localized corrosion of stainless steel used in the vessel was worried. To evaluate the risk of localized corrosion, using specially designed electrochemical testing apparatus was used under gamma-ray irradiation test. And, real size mock-up test conducted. The results showed the potential change caused by creation of H$$_{2}$$O$$_{2}$$ by water radiolysis decreased by zeolite particles and the enrichment of chloride ion concentration in the vessel do not propagate during dry up procedure of Cs adsorption vessel. These data indicate the risk of localized corrosion of Cs adsorption vessel may stay at considerably low level.

JAEA Reports

Development of the Sintering Solidification Method for Spent Zeolite to Long-term Stabilization (Contract research); FY2019 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Shibaura Institute of Technology*

JAEA-Review 2020-049, 78 Pages, 2021/01

JAEA-Review-2020-049.pdf:5.85MB

JAEA/CLADS had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project. Among the adopted proposals in FY2018, this report summarizes the research results of the "Development of the Sintering Solidification Method for Spent Zeolite to Long-term Stabilization" conducted in FY2019.

JAEA Reports

Development of the sintering solidification method for spent zeolite to long-term stabilization (Contract research); FY2018 Center of World Intelligence Project for Nuclear Science/Technology and Human Resource Development

Collaborative Laboratories for Advanced Decommissioning Science; Shibaura Institute of Technology*

JAEA-Review 2019-028, 71 Pages, 2020/03

JAEA-Review-2019-028.pdf:6.46MB

JAEA/CLADS, had been conducting the Center of World Intelligence Project for Nuclear Science/Technology and Human Resource Development (hereafter referred to "the Project") in FY2018. Among the adopted proposals in FY2018, this report summarizes the research results of the "Development of the Sintering Solidification Method for Spent Zeolite to Long-term Stabilization". The present study aims to develop the sintering solidification method for zeolites (spent zeolites) that adsorbs continuously generated radionuclides such as cesium. The sintering solidification method is able to stabilize adsorbed radionuclides such as cesium in zeolites by adding a glass as a binder to spent zeolite and sintered it. It is expected that the sintering solidification method is significantly reduce the volume of the solidified body compare with the glass solidification method and to form a stable solidified body equivalent to the calcination solidification method. In this project, we planned to select a glass suitable for the sintering solidification method and optimize the sintering temperature, etc. using non-radioactive nuclides (cold tests), and verify it by using radioactive nuclides (hot tests). In FY2018, we investigated the thermal properties of candidate glasses for binder and the effect of heating atmosphere on the sintering solidification method. Irradiated fuel for preparing simulated contaminated water containing radionuclides was selected and the condition of it was observed. In addition, we surveyed existing research results and latest research trends about solidification of zeolite, calcination solidification and so on.

Journal Articles

Direct quantitation of $$^{135}$$Cs in spent Cs adsorbent used for the decontamination of radiocesium-containing water by laser ablation inductively coupled plasma mass spectrometry

Asai, Shiho*; Ohata, Masaki*; Hanzawa, Yukiko; Horita, Takuma; Yomogida, Takumi; Kitatsuji, Yoshihiro

Analytical Chemistry, 92(4), p.3276 - 3284, 2020/02

 Times Cited Count:5 Percentile:27.9(Chemistry, Analytical)

The long-term safety assessment of spent Cs adsorbents produced during the decontamination of radiocesium-containing water at the Fukushima Daiichi Nuclear Power Plant requires one to estimate their $$^{135}$$Cs content prior to final disposal. $$^{135}$$Cs is usually quantified by inductively coupled plasma mass spectrometry (ICP-MS), which necessitates the elution of Cs from Cs adsorbents. However, this approach suffers from the high radiation dose from $$^{137}$$Cs. To address this challenge, we herein employed laser ablation ICP-MS for direct quantitation of $$^{135}$$Cs in Cs adsorbents and used a model Cs adsorbent prepared by immersion of a commercially available Cs adsorbent into radiocesium-containing liquid waste to verify the developed technique. The use of the $$^{135}$$Cs/$$^{137}$$Cs ratio and $$^{137}$$Cs radioactivity obtained by gamma spectrometry achieved simple and precise quantitation of $$^{135}$$Cs and the resulting $$^{135}$$Cs activity of 0.36 Bq agreed well with that in the original radiocesium-containing liquid waste.

Journal Articles

3.5.3 Technologies for contaminated water treatment

Uchida, Shunsuke

Genshiryoku No Ima To Ashita, p.63 - 68, 2019/03

The latest situation of contaminated water treatment in Fukushima Daiichi NPP for 8 years after its accident is reviewed. Major subjects, especially tritium treatment, to be solved related to the contaminated water and some proposal for the subjects are introduced.

Journal Articles

Effect of flowing water on Sr sorption changes of hydrous sodium titanate

Takahatake, Yoko; Shibata, Atsuhiro; Nomura, Kazunori; Sato, Tsutomu*

Minerals (Internet), 7(12), p.247_1 - 247_13, 2017/12

 Times Cited Count:9 Percentile:47.34(Geochemistry & Geophysics)

Hydrous sodium titanate (SrTreat) is able to remove radioactive Sr from Radioactive contaminated water at Fukushima Daiichi Nuclear Power station (F1NPS). Knowing the amount of radioactive nuclides in the used SrTreat is important for an effective disposal and deposition of the F1NPS waste. This study investigated changes in the ability of SrTreat to sorb Sr during its use, and to understand the causes of changes in the sorbing. After exposure to a simulated treated water for 99 h, the surface structure of the SrTreat was changed, and the percentage of sorbed Sr and the buffer capacity for protons decreased. When the amount of radioactive nuclides contained in the used SrTreat is calculated from the sorption data of the as received SrTreat.

Journal Articles

Estimation of the inventory of the radioactive wastes in Fukushima Daiichi NPS with a radionuclide transport model in the contaminated water

Shibata, Atsuhiro; Koma, Yoshikazu; Oi, Takao

Journal of Nuclear Science and Technology, 53(12), p.1933 - 1942, 2016/12

 Times Cited Count:19 Percentile:86.61(Nuclear Science & Technology)

Journal Articles

Groundwater flow modeling focused on the Fukushima Daiichi Nuclear Power Plant site

Saegusa, Hiromitsu; Onoe, Hironori; Kohashi, Akio; Watanabe, Masahisa

Proceedings of 23rd International Conference on Nuclear Engineering (ICONE-23) (DVD-ROM), 7 Pages, 2015/05

Fukushima Daiichi Nuclear Power Plant of Tokyo Electric Power Company is facing contaminated water issues. The amount of contaminated water is continuously increasing due to groundwater leakage into the underground part of reactor and turbine buildings. Therefore, it is important to understand the groundwater flow conditions at the site and to predict the impact of countermeasures taken for isolating groundwater from the source of the contamination, i.e. the reactor buildings. Installations, such as of land-side and sea-side impermeable walls have been planned as countermeasures. In this study, groundwater flow modeling has been performed to estimate the response of groundwater flow conditions to the countermeasures. From the modeling, groundwater conditions and changes in response to implementation of the countermeasures could be reasonably estimated. The results indicate that the countermeasures will decrease the volume of inflow into underground part of the buildings. This means that the countermeasures will be effective in reducing the discharge volume of contaminated groundwater to ocean.

Journal Articles

Radionuclide release to stagnant water in the Fukushima-1 Nuclear Power Plant

Nishihara, Kenji; Yamagishi, Isao; Yasuda, Kenichiro; Ishimori, Kenichiro; Tanaka, Kiwamu; Kuno, Takehiko; Inada, Satoshi; Goto, Yuichi

Journal of Nuclear Science and Technology, 52(3), p.301 - 307, 2015/03

 Times Cited Count:17 Percentile:80.88(Nuclear Science & Technology)

After the severe accident at the Fukushima-1 nuclear power plant, large amounts of contaminated stagnant water have accumulated in turbine buildings and their surroundings. This rapid communication reports calculation of the radionuclide inventory in the core, collection of measured inventory in the stagnant water, and estimation of radionuclide release ratios from the core to the stagnant water. This evaluation is based on data obtained before June 3, 2011. The release ratios of tritium, iodine, and cesium were several tens of percent, whereas those of strontium and barium were smaller by one or two orders of magnitude. The release ratios in the Fukushima accident were equivalent to those in the TMI-2 accident.

Oral presentation

Introduction of research and development regarding treatment technology for TEPCO's Fukushima Daiichi NPS accident waste

Kato, Jun; Taniguchi, Takumi; Osugi, Takeshi; Nakazawa, Osamu; Sone, Tomoyuki; Kuroki, Ryoichiro

no journal, , 

Contaminated water treatment secondary wastes have diversity and have property without processing achievement so far. Tasks for applicability evaluation of these wastes were extracted concerning solidification technologies with applied achievement for radioactive waste processing by FY2017. This report introduces research and development for solving the extracted tasks.

Oral presentation

Direct measurement of $$^{135}$$Cs in Cs adsorbent used for water decontamination by laser-ablation ICP-MS

Asai, Shiho*; Ohata, Masaki*; Hanzawa, Yukiko; Horita, Takuma; Yomogida, Takumi; Kitatsuji, Yoshihiro

no journal, , 

A large amount of spent Cs adsorbents used for decontaminating water in Fukushima Daiichi Nuclear Power Station are stored in the site. To dispose them safely, the estimation of $$^{135}$$Cs activity along with that of $$^{137}$$Cs is indispensable. $$^{135}$$Cs is generally measured by ICP-MS, which required the sample to be prepared in liquid form and thus the elution of Cs from the Cs adsorbents is essential. However, this approach suffers from the high radiation dose from $$^{137}$$Cs. In this study, we quantified $$^{135}$$Cs in a Cs adsorbent using the $$^{135}$$Cs/$$^{137}$$Cs ratio obtained by LA-ICP-MS and $$^{137}$$Cs radioactivity obtained by gamma spectrometry. To evaluate the applicability, we employed a $$^{135}$$Cs -containing water sample to prepare a model spent Cs adsorbent with a certified $$^{135}$$Cs activity. The resulting $$^{135}$$Cs activity of 0.36 Bq calculated by $$^{135}$$Cs /$$^{137}$$Cs ratio of 0.41 $$pm$$ 0.02 and $$^{137}$$Cs activity agreed well with that of the originally determined $$^{135}$$Cs activity in the model spent Cs adsorbent, demonstrating that the proposed technique has high validity to $$^{135}$$Cs determination of a real sample.

13 (Records 1-13 displayed on this page)
  • 1